江苏高邮人、博士、教授、博士生导师。2008年博士毕业于南京大学声学研究所,2010年进入物理学院工作,2011年受聘副教授,2019年晋升为教授,2015–2016在美国宾夕法尼亚州立大学进行访问学者研究。
在Phys. Rev. Appl.、Phys. Rev. E、Appl. Phys. Lett.、J. Acoust. Soc. Am.、IEEE Trans. Ultrason. Ferroelectr. Freq. Control等SCI源刊物发表论文100余篇,参编专著2部,获授权国家发明专利20余项。主持国家自然科学基金5项(面上项目4项、青年项目1项)、江苏省自然科学基金面上项目1项,作为课题负责人参与国家自然科学基金重大设备研究专项1项,国家重点研发计划1项。获教育部自然科学一等奖、江苏省科学技术三等奖各1项。2020获南京大学“魅力导师奖”。
入选“中组部青年拔尖人才”和江苏省“333高层次人才培养工程”。
中国声学学会物理声学、生物医学超声、超声检测分会委员,中国超声医学工程学会专委、超声生物效应学组常委。
1. 2023春:本科课程《信号与系统》(3学分),课程编号:12040030(声学专业本科核心课,开放选修);
2. 2023秋:本科课程《数字信号处理》(3学分),课程编号:12040040(声学专业本科核心课,开放选修);
3. 2023秋:本科课程《奇妙的声音》,课程编号:00201780(全校新生研讨课)。
v 研究兴趣:
1. 声镊和声流控芯片:面向临床诊断难题,结合MEMS和超声技术,研究声学方法在粒子/细胞等操控中的新原理和新应用,实现面向临床需求的新型诊断芯片。
2. 超声信号处理:基于活体超声成像技术,研究生物体生理运动过程中的声传播问题;探索进行新参量(温度、弹性等)成像,进行面向临床应用的技术和算法开发。
3. 聚焦超声治疗:采用凹面及相控阵等技术,研究对体内靶区组织进行中等及高强度无创治疗的新原理、新器件和新技术。
4. MEMS扬声器:探索利用微机电技术制备新型扬声器;以此为基础,开发新型参量阵扬声器器件及相关应用。
v 近年学生毕业生去向:
出国深造:杜克大学(2)、加州理工大学(1)、巴黎高科(2)、南洋理工大学(1);
国内高校:重庆医科大学(1)、上海理工大学(1)、南京师范大学(1);
国内企业:华为(4)、腾讯(1)、国家电网(1)、瑞声科技(2)、字节跳动(1)、海康威视(1)、视源科技(2).
v 近年发表的部分论文:
1. X. Z. Chen, F. S. Dong, C. H. Yin, J. Tu, D. Zhang*, and X. S. Guo*, Ultrasonic Imaging Based on Pulsed Airy Beams, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2023, 70(9): 1146-1156.
2. C. H. Yin, F. S. Dong, H. J. Su, J. Tu, D. Zhang*, X. Q. Kong*, and X. S. Guo*, In Vivo Multithread Ultrasound Thermal Strain Imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2023, 70(8): 843-853.
3. J. J. Huang, Z. Y. Wang, R. Liu, Z. H. Zhu, D. Zhang*, and X. S. Guo*, ZnO/glass-based SAW tweezer for dexterous particle patterning and patterned cell culturing, Microfluid Nanofluid, 2023, 27(5): 34.
4. T. Y. Long, L. Z. Xie, M. Pulati, Q. Wen, X. S. Guo*, and D. Zhang*, C. elegans: Sensing the low-frequency profile of amplitude-modulated ultrasound, Ultrasonics, 2023, 128: 106887.
5. J. J. Huang, Z. H. Zhu, Y. Zhang, J. Tu, X. S. Guo*, and D. Zhang, On-chip centrifuge using spiral surface acoustic waves on a ZnO/glass substrate, Sens. Actuator A-Phys., 2022, 347: 113901.
6. X. Z. Chen, S. Y. Ding, Q. R. Wei, J. Tu, X. S. Guo*, and D. Zhang*, Acoustic Gaussian-Airy beams, J. Phys. D-Appl. Phys., 2022, 55(39): 395109.
7. C. H. Yin, G. Z. Wang, Y. T. Xie, J. Tu, W. Sun, X. Q. Kong, X. S. Guo*, and D. Zhang*, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2022, 69(4): 1219-1229.
8. G. Y. Xu, J. J. Huang, Y. Zhang, L. Z. Xie, Z. Y. Ni, C. Y. Huang, G. Yao, J. Tu, X. S. Guo*, and D. Zhang*, Fourier acoustical tweezers: synthesizing arbitrary radiation force using nonmonochromatic waves on discrete-frequency basis, Phys. Rev. Appl., 2021, 15(4): 044037.
9. Z. X. Liu, G. Y. Xu, Z. Y. Ni, X. Z. Chen, J. Tu, X. S. Guo*, and D. Zhang*, Theory of acoustophoresis in counter-propagating SAW fields for particle separation, Accepted for publication by Phys. Rev. E, 2021, 103(3): 033104.
10. Z. Y. Ni, G. Y. Xu, J. J. Huang, G. Yao, J. Tu, X. S. Guo*, and D. Zhang*, Lamb wave coupled resonance for SAW acoustofluidics, Appl. Phys. Lett., 2021, 118: 051103.
11. C. H. Yin, G. Z. Wang, K. X. Yang, J. Tu, X. S. Guo*, and D. Zhang*, Thermal strain imaging in vivo using interpolated IQ-images, Ultrasonics, 2020, 110: 106292.
12. G. Y. Xu, Z. Y. Ni, X. Z. Chen, J. Tu, X. S. Guo*, H. Bruus, and D. Zhang*, Acoustic characterization of polydimethylsiloxane for microscale acoustofluidics, Phys. Rev. Appl., 2020, 13(5): 254069.
13. P. F. Fan, C. H. Yin, H. H. Xue, L. Z. Xie, W. Sun, J. Tu, X. S. Guo*, X. Q. Kong, and D. Zhang*, In vivo evaluation of two-dimensional temperature variation in perirenal fat of pigs with B-mode ultrasound, J. Appl. Phys., 2019, 126(8): 084902.
14. Z. Y. Ni#, C. H. Yin#, G. Y. Xu, L. Z. Xie, J. J. Huang, S. L. Liu, J. Tu, X. S. Guo*, and D. Zhang*, Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain, Lab Chip, 2019, 19(16): 2728-2740.
15. S. L. Liu#, Z. Y. Ni#, G. Y. Xu, X. S. Guo*, J. Tu, H. Bruus, and D. Zhang*, Two-Dimensional Mapping Separating the Acoustic Radiation Force and Streaming in Microfluidics, Phys. Rev. Appl. 2019, 11(4): 044031.
16. Z. Y. Jin, L. S. Huo, T. Y. Long, X. S. Guo*, J. Tu, and D. Zhang, An Online Impedance Analysis and Matching System for Ultrasonic Transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2019, 66(3): 591-599.
17. Y. C. Shen, Y. Y. Yang, X. S. Guo*, Y. Shen*, and D. Zhang*, Low-frequency anechoic metasurface based on coiled channel of gradient cross-section, Appl. Phys. Lett., 2019, 114(8): 083501.
18. C. Y. Chen, S. P. Zhang, Z. M. Mao, N. Nama, Y. Y. Gu, P. H. Huang, Y. Jing, X. S. Guo*, F. Costanzo*, and T. J. Huang*, Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics, Lab Chip, 2018, 18(23): 3645-3654.
19. C. H. Li, J. M. Miao, K. X. Yang, X. S. Guo*, J. Tu, P. T. Huang, and D. Zhang*, Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating. J. Appl. Phys., 2018, 123(17): 174906.
20. X. S. Guo, C. L. Cai, G. Y. Xu, Y. Y. Yang, J. Tu*, P. T. Huang, and D. Zhang*, Interaction between cavitation microbubble and cell: A simulation of sonoporation using boundary element method (BEM). Ultrason Sonochem, 2017, 39: 863-871.
21. C. H. Li, Y. Y. Yang, X. S. Guo*, J. Tu, P. T. Huang, F. Q. Li, and D. Zhang*, Enhanced ultrasonic focusing and temperature elevation via a therapeutic ultrasonic transducer with sub-wavelength periodic structure, Appl. Phys. Lett., 2017, 111(5): 053701.
22. S. L. Liu, G. Y. Xu, Z. Y. Ni, X. S. Guo*, L. J. Luo, J. Tu, and D. Zhang*, Quantitative assessment of acoustic pressure in one-dimensional acoustofluidic devices driven by standing surface acoustic waves, Appl. Phys. Lett., 2017, 111(4): 043508.
23. S. L. Liu, Y. Y. Yang, Z. Y. Ni, X. S. Guo*, L. J. Luo, J. Tu, D. Zhang*, and J. Zhang, Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields, Sensors, 2017, 17(7): 1664.
24. P. F. Fan#, Y. Zhang#, X. S. Guo#, C. L. Cai, M. C. Wang, D. X. Yang, Y. R. Li, J. Tu, L. A. Crum, and D. Zhang, Cell-cycle-specific Cellular Responses to Sonoporation, Theranostics, 2017, 7(19): 4894-4908.
25. S. Y. Liu, J. Wu, Y. Y. Gu, X. S. Guo*, J. Tu, D. Xu*, and D. Zhang*, Ambient pressure evaluation through sub-harmonic response of chirp-sonicated microbubbles. Ultrasound Med. Biol., 2017, 43(1): 332-340.
26. Z. Lin, X. S. Guo*, J. Tu, J. C. Cheng, J. R. Wu, P. T. Huang, and D. Zhang*, A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures, Appl. Phys. Lett., 2015, 107(11): 113505.
27. Z. Lin, X. S. Guo*, J. Tu, Q. Ma, J. Wu, and D. Zhang*, Acoustic non-diffracting Airy beam, J. Appl. Phys., 2015, 117(10): 104503.
v 近年申请/授权的发明专利
1. 郭霞生等,基于呼吸相位追踪的活体时间复合成像方法及系统,CN202310452869.9,申请日:2023-04-25
2. 郭霞生等,一种声表面波细胞打印芯片装置及方法,CN202211172975.3,申请日: 2022-09-26
3. 郭霞生等,多线程融合的活体超声热应变成像方法及装置,CN202210003923.7,申请日:2022-01-04
4. 郭霞生等,一种基于超声成像估计体内热源分布的方法及装置,CN202210003913.3,申请日:2022-01-04
5. 郭霞生等,一种基于活体超声图像的多线程应变成像方法及装置,CN202210003911.4,申请日:2022-01-04
6. 郭霞生等,一种基于空间傅里叶变换的声镊实现方法及系统,ZL202011194587.6,授权日:2021-09-28
7. 郭霞生等,一种耦合共振型声表面波微流控芯片及其制作方法,ZL202011170759.6,授权日:2021-06-22
8. 郭霞生等,一种用于微粒子分离的超声表面驻波微流控芯片设计方法,ZL202010549544.9,授权日:2021-09-28
9. 郭霞生等,一种用于微粒子分离的超声表面驻波微流控芯片和应用,ZL202010548474.5,授权日:2021-09-28
10. 郭霞生等,一种基于活体超声图像的呼吸分离式应变成像方法,Z:202010731441.4,授权日:2023-07-18
11. 郭霞生等,一种基于非线性热膨胀评估温度变化的超声方法及系统,Z:202010059747.X,授权日:2020-12-29
12. 郭霞生等,一种基于B超信号评估呼吸和心动周期的方法,ZL201911391640.9,授权日:2023-06-09
13. 郭霞生等,一种软材料声学参数的测量方法,ZL201911134661.2,授权日:2020-09-08
14. 郭霞生等,一种基于低采样率B超图像计算热应变分布的方法,CN201910112033.8,申请日:2019-02-13(已转让)
15. 郭霞生等,一种渐变截面低频吸声体的设计方法,ZL201811340120.0,授权日:2022-12-09
16. 郭霞生等,基于热膨胀和门控算法测量生物组织温度变化的超声方法,ZL201710876349.5,授权日:2020-04-10(已转让)
17. 郭霞生等,一种聚焦声透镜的设计方法,ZL201510816714.4,授权日:2018-03-27(已转让)