唐 峰

唐 峰

副教授 博导

个人简历

2007年~2011年 南京大学物理学院 本科

2009年进入南京大学首届国家实验室国家实验班

2011年~2019年 南京大学物理学院 博士

经过10年的虽艰难但因纯粹而快乐的关于学术研究的训练,积累了一点点科研能力,明确了肩负的使命,于2019年9月获得博士学位

2019年9月至2023年2月于南京大学做专职科研岗(特任研究员)

2023年3月转为助理教授,同年,基于助理教授以前的学术成果获得了国家优青,因而转为准聘副教授。


研究方向

凝聚态理论物理、计算物理 (关键词:拓扑物态、物态调控、群论、有效模型、高通量计算、材料数据库、计算软件)

主要课程

《数学物理方法导论》

代表成果

任助理教授以来的工作:

1.结合第一性原理计算和对称性分析,确定了100多个晶体材料声子谱中拓扑荷=4的外尔点及其它可能共存的拓扑声子交叉,并指出较低价k.p模型展开导致的近似对称性保护的近似节线:

Catalog of maximally charged Weyl points hosting nearly emanating nodal lines in phonon spectra, Dongze Fan, Xiangang Wan, Feng Tang, PRB 108, 104110 (2023).

(https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.104110)


2.基于80个层群对二维材料中所有线性能带交叉构建了有效模型(k.p模型),基于具体模型分析了隐藏的手征对称,并提出了快速鉴定线性交叉存在的对称性规则。这也是一个基于对称性推导具有线性交叉二维材料魔角平带条件的准备工作:

Comprehensive study of all spinful and spinless linear band crossings in the 80 layer groups, Wencheng Wang, Liangliang Huang, Xiangang Wan, Feng Tang, PRB 109, 205141 (2024).

(https://journals.aps.org/prb/abstract/10.1103/PhysRevB.109.205141)


3. 关于近年来基于自动化构建k.p模型及其在能带交点分类应用的综述,提供了包含所有具体模型的mx文件,强调了:

基于空间群获得的所有能带交点附近nodal structures几何构型、k.p模型展开阶数对nodal structures的影响及其对近似nodal structures打开能隙大小的半定量估计、纯对称性无法给出但k.p模型能给出的nodal line的具体保护机制:

Group-theoretical study of band nodes and the emanating nodal structures in crystalline materials, Feng Tang, Xiangang Wan, Quantum Frontiers 3, 14 (2024).

(https://link.springer.com/article/10.1007/s44214-024-00060-6)


4. 系统研究了实的三重简并点(RTP),列出386个实际材料声子谱中具有非零Euler数的RTP,我们也根据原子位置信息和空间群信息直接列出了15478个ICSD中材料的RTP出现次数。

Phonon realizaton of real triple points, X. X. Kong, Dongze Fan, Xiangang Wan and  Feng Tang, PRB 110, 174111 (2024).

(https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.174111)


5. 一个适合非磁性和磁性晶体材料的计算波函数不可约表示信息的用户友好软件包:

ToMSGKpoint: A user-friendly package for computing symmetry transformation properties of electronic eigenstates of nonmagnetic and magnetic crystalline materials, Liangliang Huang, Xiangang Wan and Feng Tang, Computer Physics Communications 311, 109510 (2025).

(https://doi.org/10.1016/j.cpc.2025.109510)


任助理教授之前的工作:

1. Feng Tang, Hoi Chun Po, Ashvin Vishwanath and Xiangang Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566, 486-489 (2019). 

2. Feng Tang, Hoi Chun Po, Ashvin Vishwanath and Xiangang Wan, Efficient topological materials discovery using symmetry indicators, Nature Physics 15, 470-476 (2019). 

3. Feng Tang, Hoi Chun Po, Ashvin Vishwanath and Xiangang Wan, Topological materials discovery by large-order symmetry indicators, Science Advances 5, aau8725 (2019). 

4. Di Wang*, Feng Tang*, Jialin Ji, Wenqing Zhang, Ashvin Vishwanath, Hoi Chun Po and Xiangang Wan, Two-dimensional topological materials discovery by symmetry-indicator method, Phys. Rev. B 100, 195108 (2019). 

5. Lin Wu, Feng Tang# and Xiangang Wan, Exhaustive list of topological hourglass band crossings in 230 space groups, Phys. Rev. B 102, 035106 (2020). 

6. Lin Wu, Feng Tang# and Xiangang Wan, Symmetry-enforced band nodes in 230 space groups, Phys. Rev. B 104, 045107 (2021).

7. Yating Hu, Xiangang Wan and Feng Tang#, Magnetic hourglass fermions: From exhaustive symmetry conditions to high-throughput materials predictions, Phys. Rev. B 106, 165128 (2022).  

8. Dongze Fan, Xiangang Wan and Feng Tang#All hourglass bosonic excitations in the 1651 magnetic space groups and 528 magnetic layer groupsPhys. Rev. Materials 6, 124201 (2022).  

9. Feng Tang# and Xiangang Wan#, Exhaustive construction of effective models in 1651 magnetic space groups, Phys. Rev. B 104, 085137 (2021). 

10. Feng Tang# and Xiangang Wan#, Complete classification of band nodal structures and massless excitations, Phys. Rev. B 105, 155156 (2022). 

11. Feng Tang*, Seishiro Ono*, Xiangang Wan and Haruki Watanabe, High-throughput Investigations of Topological and Nodal Superconductors, Phys. Rev. Lett. 129, 027001 (2022). 

12. Feng Tang and Xiangang Wan, Effective models for nearly ideal Dirac semimetals, Front. Phys. 14, 43603 (2019).

13. Feng Tang and Xiangang Wan, Efficient topological materials discovery using symmetry indicators, Physics 48, 341-356 (2019). 

14. Di Wang, Xiangyan Bo, Feng Tang and Xiangang Wan, Calculated magnetic exchange interactions in the Dirac magnon material Cu3TeO6, Phys. Rev. B 99, 035160 (2019).

15.Zhipeng Cao, Feng Tang, Di Wang and Xiangang Wan, First-principles identification of topological crystalline insulators with C2 rotation anomaly, Phys. Rev. B 103, 155113 (2021). 

16.Di Wang, Feng Tang, Yongping Du and Xiangang Wan, First-principles study of the giant magnetic anisotropy energy in bulk Na4IrO4, Phys. Rev. B 96, 205159 (2017). 

17.Qun-Li Lei, Wei Zheng, Feng Tang, Xiangang Wan, Ran Ni and Yu-qiang Ma, Self-Assembly of Isostatic Self-Dual Colloidal Crystals, Phys. Rev. Lett. 127, 018001 (2021). 

18.Qun-Li Lei, Feng Tang, Ji-Dong Hu, Yu-qiang Ma and Ran Ni, Duality, Hidden Symmetry, and Dynamic Isomerism in 2D Hinge Structures, Phys. Rev. Lett. 129, 125501 (2022). 

19.Di Wang, Feng Tang, Hoi Chun Po, Ashvin Vishwanath and Xiangang Wan, XFe4Ge2 (X = Y, Lu) and Mn3Pt: Filling-enforced magnetic topological metals, Phys. Rev. B 101, 115122 (2020). 

20.J. Jiang, F. Tang, X. C. Pan, H. M. Liu, et al., Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe2, Phys. Rev. Lett. 115, 166601 (2015). 

21.Yongping Du, Feng Tang, Di Wang, Li Sheng, Er-jun Kan, Chun-Gang Duan, S. Y. Savrasov and Xiangang Wan, CaTe: a new topological node-line and Dirac semimetal, npj Quantum Materials 2, 3 (2017). 

22.Zhipeng Cao, Feng Tang, Di Wang and Xiangang Wan, Systematic identification of mirror-protected topological crystalline insulators by first-principles calculations, New J. Phys. 23, 103032 (2021). 

23.Di Wang, Jihai Yu, Feng Tang, Yuan Li and Xiangang Wan, Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry k points, Chinese Phys. Lett. 38, 117101 (2021). 

24.Y. Zhou, M. N. Chen, M. D. Zhao, F. Tang, C. Q. Shao and M. Y. Dai, Unusual plasmonic responses in phosphorene with topological transition: the interplay of strain and doping, New J. Phys. 23, 113036 (2021).

25. Feng Tang, Xiangang Wan, arXiv: 2302.13622, Evolution of topological states in magnetic materials by symmetry-breaking.

26. Xi Luo, Feng Tang, Xiangang Wan and Yue Yu, arXiv: 1709.06947, Majorana fermions in three dimensions and realization in critical Weyl semimetals.

27. Feng Tang, Xi Luo, Yongping Du, Yue Yu and Xiangang Wan, arXiv: 1612.05938, Realization of Massive Relativistic Spin-3/2 Rarita-Schwinger Quasiparticle in Condensed Matter Systems.

28. Xi Luo, Feng Tang, Xiangang Wan and Yue Yu, arXiv: 1609.06956, Nonlinear Quantum Hall effects in Rarita-Schwinger gas.

联系方式

办公地点: 周一-周五晚上(物理楼330),周六、周日全天(物理楼330)

个人网页: tnsc.nju.edu.cn

Copyright 2020 All Rights Reserved. 南京大学物理学院版权所有