物理学院 School of Physics, Nanjing University

加入收藏

物理学院第 201802 期工作简报(2018-3-5)(院办)

2018年03月06日

南京大学物理学院工作简报

201802(总第273)

南京大学物理学院  2018-3-5


 

212日上午,我院在知行楼一楼报告厅举行了离退休同志茶话会,一百多位离退休教职工参加。(院办)

31日,物理学院安全工作组对全院的安全工作进行了例行检查。(院办)

 

1、邹志刚院士受聘中国氢能联盟战略指导委员会委员

2018211日上午,由国家能源集团牵头组织的中国氢能源及燃料电池产业创新战略联盟成立大会在北京钓鱼台国宾馆举行,此次联盟的成立标志着我国从国家层面上对氢能社会构建的推动以及氢能产业布局的推广。大会由科技部原部长、中科院院士徐冠华主持。

会上,国家能源投资集团总经理、中国工程院院士凌文宣读联盟成立决议;中国工程院党组书记李晓红、国家能源局局长努尔·白克力、国务院国资委主任肖亚庆、工业与信息化部部长苗圩先后致辞;全国政协副主席、科技部部长、中科院院士万钢作大会主旨演讲;我校邹志刚院士受聘为联盟的战略指导委员会委员。

据介绍,氢能是绿色、高效的二次能源,燃料电池是高效清洁利用氢能的最佳工具,氢能及燃料电池技术被认为是解决未来人类能源危机的终极方案。邹志刚院士领衔的南京大学环境材料与再生能源研究中心团队多年来在氢能的规划、氢能的清洁制取以及催化剂、膜电极、电堆等氢燃料电池关键材料、部件的基础应用研究方面取得系列创新成果,此后在南京大学与昆山市政府共建共管的产学研创新载体——南京大学昆山创新研究院进行系列化中试放大,并开发了相关的氢燃料电池关键材料及部件的规模化制备的智能生产和检测设备。从基础应用研究到工业化中试放大,邹志刚院士团队的氢能与氢燃料电池相关成果在江苏省科技成果转化资金的资助下,经由孵化企业昆山桑莱特新能源科技有限公司进行市场化运作。

(南京大学新闻网http://news.nju.edu.cn/show_article_1_48579

 

2、缪峰教授课题组及合作团队在Nature子刊报道可耐受超高温忆阻器重要进展

忆阻器,是一种基于记忆外加电压或电流历史而动态改变其内部电阻状态的电阻开关。由于拥有超小的尺寸,极快的擦写速度,超高的擦写寿命,多阻态开关特性和良好的CMOS兼容性,忆阻器被业内视为可应用在未来存储和类脑计算(神经形态计算)技术的重要候选者。然而,基于传统氧化物材料的忆阻器在高温和承受压力等恶劣环境下,会出现器件的失效,远远无法满足航空航天、军事、石油和天然气勘探等应用中对于电子元件耐热性的需求。因此,寻找新材料和新结构来提升忆阻器在恶劣环境下工作的可靠性成为忆阻器研究的一个重要挑战。

南京大学物理学院缪峰教授课题组近年来围绕二维材料电子器件应用开展了系统的工作,在包括场效应电子器件、红外光电探测器件等领域已取得一系列成果。目前,他们和科研合作团队利用二维层状硫氧化钼(氧化二硫化钼)以及石墨烯构成三明治结构的范德华异质结,在世界上首次实现了基于全二维材料的、可耐受超高温和强应力的高鲁棒性忆阻器,为推动忆阻器在高温电子器件和相关技术领域的应用迈出重要一步。

这项工作选取了硫氧化钼(氧化二硫化钼)和石墨烯分别作为忆阻器的介质层和电极材料,制备了三明治结构的异质结。团队首先利用机械剥离法得到二硫化钼和石墨烯薄膜样品,将二硫化钼薄膜加热氧化后得到硫氧化钼。接着利用二维材料定向转移的工艺,将石墨烯、硫氧化钼、石墨烯堆叠在一起形成具有原子级平整度界面的范德华异质结(图a),如此高质量的界面是基于传统氧化物材料的忆阻器所无法实现的。测试结果显示这种基于全二维材料的异质结能够实现非常稳定的开关:可擦写次数超过千万次(107,图b),擦写速度小于100 ns,并且拥有很好的非挥发性。团队发现该结构的忆阻器能够在高达340℃的温度下稳定工作并且保持良好的开关性能(图c,图d),创下了忆阻器工作温度的新记录(此前发表的最高记录为200℃)。团队利用透射电子显微镜进行原位观察,发现该忆阻器的耐热性来源于硫氧化钼超高的热稳定性,并进一步清楚地揭示了该忆阻器中基于氧离子迁移的工作机制。结果显示,该忆阻器中的导电通道在开关过程中一直被具有超高热稳定性的单晶石墨烯和层状硫氧化钼很好地保护着,保证了导电通道在高温擦写过程中的稳定性。最后,团队将该忆阻器置于柔性衬底聚酰亚胺上,发现器件在大于0.6%的形变应力下伸曲1200次之后同样能够稳定地工作。


《自然·电子学》官网截图与基于二维材料的耐高温忆阻器:(a)器件结构示意图;(b)器件在脉冲电压操作下2×107次的稳定开关表现;(c)器件在20~340℃温度范围内的开关曲线;(d)器件分别在100℃、200℃和300℃高温下的1000次稳定开关表现。

201825日,该工作以《基于层状二维材料的高鲁棒性忆阻器》(Robust memristors based on layered two-dimensional materials)为题发表在《自然·电子学》杂志上(Nature Electronics DOI:10.1038/s41928-018-0021-4),这也是南京大学在该期刊发表的首篇论文。物理学院博士生王淼和现代工程与应用科学学院博士生蔡嵩骅为论文的共同贡献第一作者,缪峰教授、现代工程与应用科学学院的王鹏教授和马萨诸塞大学的杨建华教授为该论文的共同通讯作者。这项研究工作不仅展示了二维层状材料异质结构在忆阻器领域中的巨大应用前景,对未来极端环境下电子元件的设计与研究有着重要的指导意义;同时也指出,因为二维材料异质结构可以结合不同二维材料的优异性质,也给人们提供了一种解决其它领域电子器件技术挑战的可能的通用途径。

该项研究得到微结构科学与技术协同创新中心的支持,以及国家杰出青年科学基金、科技部量子调控国家重大科学研究计划(青年科学家专题)项目、江苏省杰出青年基金、国家自然科学基金等项目的资助。

相关链接:

论文链接:https://www.nature.com/articles/s41928-018-0021-4

作为自然科研品牌旗下近期推出的新期刊,《自然·电子学》(Nature Electronics)面向学术界和工业界,旨在发表电子学领域所涵盖的基础研究和应用研究的最新原创性成果,侧重报道新兴技术的发展及其对社会变革的重大影响。官网:http://www.nature.com/natelectron/

(南京大学新闻网http://news.nju.edu.cn/show_article_12_48535

 

3、温锦生教授研究团队与合作者在量子自旋液体体系α-RuCl3中取得又一重要进展

南京大学物理学院温锦生教授研究团队与复旦大学李世燕教授课题组合作,对Kitaev量子自旋液体候选体系α-RuCl3在高磁场环境下的奇异行为有了更深的认识。该研究成果以 Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet α-RuCl3 across the Field-induced Phase Transition为题于201828日发表于《物理评论快报》[Phys. Rev. Lett. 120, 067202 (2018)]。这是温锦生教授研究团队在不到一年的时间里在该一流期刊发表的第三篇关于该材料的工作,组内博士生冉柯静为这三篇论文的第一或共同第一作者。

一般磁性材料在低温下磁矩会呈规则有序排列。而对于量子自旋液体这个全新的拓扑量子态则大为不同——该体系电子的自旋即使在绝对零度也呈液体一般的无序状态,并因该特性而得名。有趣的是,虽然自旋无序排列,它们之间却存在着长程的量子纠缠,因此可以被应用于量子通讯及量子计算。同时,有观点认为,高温超导电性是通过掺杂量子自旋液体演化而来的。因此对它的研究有助于高温超导机制的理解。这种新奇的量子态也因此吸引了众多凝聚态领域的研究者。

目前被认为是量子自旋液体的体系一般是建立在三角格子或Kagome格子上的阻挫系统。2006年,加州理工大学的Alexei Kitaev教授提出了一种定义在二维六角蜂窝状格子上具有有效1/2自旋的拓扑自旋模型,被称为Kitaev量子自旋模型。与几何磁阻挫导致的量子自旋液体不同的是,Kitaev量子自旋液体中磁无序的产生是由于体系中的量子阻挫所致。自旋之间的相互作用称为Kitaev相互作用。该模型具有拓扑序,存在非阿贝尔任意子激发。通过对任意子的操作,可以实现量子计算。因此,在实验上找到这种材料具有重大意义。此前,温锦生教授研究团队与合作者在α-RuCl3材料[晶体结构如图1(a)所示]中首次发现了Kitaev相互作用[Physical Review Letters 118, 107203 (2017)](报道见http://news.nju.edu.cn/show_article_12_45076);该团队与合作者的进一步工作发现了该材料中磁场诱导的自旋液体相的证据 [Phys. Rev. Lett. 119, 227208 (2017)] (报道见http://news.nju.edu.cn/show_article_12_47925)。

尽管如此,高场下该材料的性质还存在许多争议,更加接近样品基态的极低温环境对于解决这些争议尤为重要。因此,在前期温锦生教授研究团队单晶生长、磁场下磁化率、比热测量等工作的基础上,复旦大学李世燕教授课题组进行了磁场下的极低温热导测量,温度最低降低至80mK,获得的部分结果如图1.(b)所示:热导在临界场7.5T附近达到最小值,当跨过7.5T后,磁有序消失;高场相的热导结果显示当温度趋近于零度时,磁激发对于热导并无贡献。该研究结果揭示了高场下α-RuCl3本质的一个重要方面,对描述其基态的理论模型提供了很强的约束条件。


图1. (a) α-RuCl3的单层晶体结构。(b) 热导κ比温度T在不同温度下随磁场的依赖关系曲线,磁场方向平行于a-b面。

复旦大学俞云杰与徐杨、南京大学冉柯静等同学为论文的共同第一作者,南京大学温锦生教授与复旦大学李世燕教授为共同通讯作者。该项目得到了国家自然科学基金、一流大学和一流学科建设计划、人工微结构协同创新(2011)中心等的支持。

(南京大学新闻网http://news.nju.edu.cn/show_article_12_48595

 

4温锦生教授与李建新教授联合团队及合作者在量子自旋液体中取得重要进展

近日,南京大学人工微结构协同创新中心的三个单位的研究人员,包括南京大学物理学院温锦生教授、李建新教授与于顺利副教授、刘俊明教授,复旦大学李世燕教授和浙江大学路欣教授等课题组通力合作,在量子自旋液体的研究中取得了新的进展。该合作团队用浮区炉方法生长出被广泛认为是量子自旋液体的三角晶格材料YbMgGaO4,并且克服了样品易挥发、不稳定的难题,长出了该材料的姊妹材料YbZnGaO4。综合成分结构分析、直流磁化率、极低温比热、中子散射、极低温热导率、极低温交流磁化率等实验手段,结合线性自旋波的理论模拟,发现这些材料的真实基态为自旋玻璃态。相关成果以Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO4为题发表在《物理评论快报》上 [Physical Review Letters 120, 087201 (2018)]。这是温锦生教授课题组与合作者在不到一年的时间里在该期刊发表的第四篇关于量子自旋液体方面的工作。

对于一般的磁性材料,在高温时会因为热涨落强,使得电子的自旋不会发生有序排列。随着温度的降低,热涨落变弱,系统为了降低自身的能量,会倾向于打破某种对称性,发生磁相变,成为一个磁有序系统。但是在量子自旋液体中,由于量子涨落非常强,导致系统里电子的自旋在绝对零度时仍处于一个像液体一样的无序状态——材料也因该特性而得名。有趣的是,虽然自旋无序排列,它们之间却存在着长程的量子纠缠,因此将来可以被应用于量子通讯。通过对其中的任意子激发进行操作,又能够实现量子计算。同时,基于量子自旋液体的基态与超导中库珀对的高度相似性,诺奖得主、普林斯顿大学的Philip Anderson提出,高温超导电性是通过掺杂量子自旋液体演化而来的。因此对它的研究有助于高温超导机制的理解。这种新奇的量子态也因此吸引了众多凝聚态领域的研究者。在具有三角或者Kagome格子的磁性材料中(如图1所示),反铁磁交换相互作用在一个三角格子的不同格点上不能被同时满足,由此造成了很强的几何阻挫,并产生了很强的形成量子自旋液体所需的量子涨落。因而,在这些材料中寻找量子自旋液体被认为是一个可行的方向。


图1. 二维的三角格子 (a) 和 Kagome格子 (b) 示意图; 箭头和问号分别代表自旋的方向和几何阻挫。

YbMgGaO4就是这样一种三角格子系统,而且之前多个研究组大量的实验证据表明该材料可能为一个理想的量子自旋液体。但是,作为量子自旋液体,该材料存在以下几个主要问题:1)材料的磁相互作用J很小,只有1.5 K,大约相当于0.15 meV,对探测仪器的分辨率提出了很高的要求;2Mg2+Ga3+完全换位,造成了很强的无序性,导致了无序的电荷环境,从而可能对磁相互作用造成影响。尽管这些离子在非磁层并且离Yb3+所在的磁层较远,但是在J很小的情况下,该无序的影响应当不能被忽略;3)该工作合作团队之一、李世燕教授课题组前期的热导率测量发现[Physical Review Letters 117, 267202 (2017)],该材料的热导没有来自于磁激发的正面的贡献,而根据其他实验结果,该材料的磁激发是无能隙的。这一结果对该材料作为一个无能隙的量子自旋液体的观点提出了很大的挑战。那么该材料究竟是不是量子自旋液体?如果不是,那它的真正基态究竟是什么?那些类似量子自旋液体的现象的起因又是什么?带着这些问题,该合作团队生长出了高质量的YbMgGaO4单晶,并且克服了种种困难,长出了一种新的三角晶格材料,YbMgGaO4的姊妹材料—YbZnGaO4(如图2所示),并运用多种技术手段并结合理论,进行了深入、系统、全面的比较研究。

直流磁化率结果[2c]显示最低温度测到2 K时,仍然没有长程磁序的出现。通过对数据进行拟合,得到了该材料的J约为1.73 K,与YbMgGaO4接近。图2d)展示了YbZnGaO4极低温的磁比热结果,在50 mK时仍然没有发现代表着相变的尖锐峰的出现。这些结果与此前对YbMgGaO4的测量结果非常类似。


图2. (a) YbZnGaO4晶体结构图; (b) Yb3+磁性层的俯视图; (c) YbZnGaO4单晶和多晶直流磁化率测试结果; (d) 0 T和9 T磁场下的磁比热测试结果; 插图为YbZnGaO4单晶样品。

随后,该合作团队用高质量的YbZnGaO4单晶 [如图 2 (d) 插图所示]进行了中子散射的测量。在弹性中子散射中他们发现材料不具有长程的磁有序。在非弹性中子散射中发现了如图3(a)所示的沿着布里渊区边界连续分布的很宽的激发谱,并且如图3(c)所示,该连续谱一直到延续到带顶1.4 meV。中子散射的结果也与之前YbMgGaO4的测量结果如出一辙。


图3. (a)和(b)分别为实验和理论计算能量为0.6 meV的动量空间的非弹性中子散射激发谱; (c)和(d) 分别为实验和理论计算的沿着布里渊区中M1-K-Γ1和Γ1-M22高对称方向的色散结果图。

量子自旋液体一个非常重要的特征是具有分数化的激发,一种典型的分数化激发是自旋为1/2spin-1/2)的自旋子(spinon)。该激发对应的准粒子不被局域在格点上,类似于巡游电子,具有自己的色散,两个自旋子的束缚态则对应于通常的自旋为1spin-1)的磁振子(magnon)激发。磁性的中子散射是一个自旋为1spin-1)的过程,因此在激发量子自旋液体中的准粒子时,需要同时激发准粒子与准粒子空穴组成的粒子-空穴对,而所有满足能量与动量守恒关系的粒子-空穴对都可以被激发。因此,中子散射得到的激发谱为连续谱,跟有明显色散关系的自旋波显著不同。基于该原因,类似于图3(a)(c)所示的连续谱被认为是迄今为止最为可信的量子自旋液体的判据。但是,连续谱是否为量子自旋液体的充分必要条件呢?

YbZnGaO4YbMgGaO4类似—J很小,且Zn2+离子和Ga3+离子的完全换位带来了很强的无序性。那么,如果在一个有序系统里引入无序,在J比较小的情况下,是否也可以产生实验所观测到的连续谱呢?基于这种考虑,该团队采用了之前理论学家提出的该材料的基态长程有序的自旋条纹相,在这个基础上引入了无序,用各向异性的海森堡模型进行了线性自旋波计算。得到的部分结果如图3 (b)(d)所示。通过与图3(a)(c)的实验结果进行比较,可以很清楚地发现理论计算与实验观测可以很好地吻合。换言之,在有序系统中引入无序,同样可以产生连续谱,连续谱只是量子自旋液体的必要非充分条件。

为了进一步揭示系统的基态,该团队进行了极低温热导率的测量。图4 (a)展示了YbZnGaO4YbMgGaO4的热导率结果,可以看到这两个姊妹化合物的热导结果非常类似,同样在热导测试中没有探测到有任何巡游准粒子的迹象。该结果不支持无能隙的量子自旋液体模型,但是却可以用无序导致的自旋玻璃态来解释。在自旋玻璃态中,无序的存在导致了磁激发的平均自由程变得很短,从而对热导没有明显的贡献。

自旋玻璃态可以通过交流磁化率的测量进行证实。图4(b)-(d)显示了YbMgGaO4YbZnGaO4单晶的极低温交流磁化率的结果。在100 Hz时,在9993 mK分别探测到了这两个材料交流磁化率存在一个宽峰,并且峰的位置随着测量频率的增加向高温方向出现明显的移动。这恰恰是自旋玻璃态所具有的特征,表明了材料在该峰值温度以下自旋出现冻结,形成长程无序、短程有序的自旋玻璃相。该峰所对应的温度也被称为冻结温度Tf

该自旋玻璃态可以很好地解释文章中所有的实验结果,如直流磁化率、比热、中子散射、热导、交流磁化率,而后两者与量子自旋液体相左,特别是交流磁化率的结果则直接说明了该材料的基态为自旋玻璃。在阻挫与无序存在的情况下,自旋玻璃相是一个常见的基态。


图4. (a) YbZnGaO4和YbMgGaO4与非磁性的LuMgGaO4热导结果比较; (b) YbZnGaO4和YbMgGaO4交流磁化测得的冻结温度随频率变化趋势图; (c)和(d)分别为YbZnGaO4和YbMgGaO4极低温交流磁化率随温度变化图;插图为温度最高测到4 K区间的交流磁化结果。

该工作在量子自旋液体领域具有非常重要的意义。表明看上去像是来源于量子自旋液体的实验观察其实是来源于无序导致的自旋玻璃态。特别是一度被认为是确定量子自旋液体最有力的证据从中子散射测量中得到的连续谱,也可以由自旋玻璃态产生。这些结果为日后量子自旋液体的发现与判定提供了重要的启示。该工作的结论近期陆续得到了国外知名理论研究组的支持[Phys. Rev. Lett. 119, 157201 (2017), arXiv:1801.06941]

南京大学温锦生教授课题组的博士生马祯、王靖珲和李建新教授课题组的博士生董召阳以及复旦大学李世燕教授课题组的博士生张骏为论文的共同第一作者,南京大学温锦生教授、李建新教授、于顺利副教授和复旦大学李世燕教授为共同通讯作者。马祯、王靖珲等进行了晶体生长、成分结构分析、直流磁化率、比热、中子散射等的测量。张骏等进行了极低温比热及热导的测量。美国量子设计公司的应用组成员进行了极低温交流磁化率的测量。中子散射实验工作由马祯、王靖珲等在德国慕尼黑工业大学的中子研究中心与澳大利亚布拉格研究所的谱仪上在谱仪科学家的协助下完成。南京大学刘俊明教授、浙江大学路欣教授课题组分别在单晶生长与比热测量方面提供了帮助。该工作得到了国家自然科学基金、国家重大研发计划、一流大学和一流学科建设计划、人工微结构协同创新(2011)中心的支持。

(南京大学新闻网http://news.nju.edu.cn/show_article_12_48596

more学院新闻

more通知公告