物理学院 School of Physics, Nanjing University

加入收藏

物理学院第 201810 期工作简报(2018-11-22)(院办)

2018年11月22日

南京大学物理学院工作简报

201810(总第281)

南京大学物理学院  2018-11-22


 

经学校考核领导小组研究决定,我院2017年度考核人员考核优秀人员为:曹毅、丁海峰、范理、高惠滨、郭霞生、胡小鹏、黄润生、刘辉、刘俊明、卢晶、彭茹雯、宋凤麒、孙建、万贤纲、王骏、王晓勇、王云、温锦生、闻海虎、吴雪炜、邢定钰、许昌、许跃枫、杨京、姚舸、于涛、张春峰、张海军、张瑞利、张文俊、祝世宁、王寅龙;考核基本合格人员:李世民;考核不定等级人员:胡国睿、王强、戴耀民、梁世军、陆亮亮、闵天觉、王怀强;其余参加考核人员:均为合格。未参加考核人员:周文奇。(院办

 

1物理学院在第二类拓扑狄拉克材料生长方面取得进展

近日,南京大学物理学院、电子学院、中国科学技术大学、中科院物理所、国家纳米科学中心、西湖高等研究院等单位共同合作,在二类狄拉克半金属能带优化的相关研究中取得新进展。成果以《二类狄拉克半金属Ir1−xPtxTe2中的能带优化与超导电性》(Band Structure Perfection and Superconductivity in Type-II Dirac Semimetal Ir1−xPtxTe2)为题,于717日发表在《先进材料》(Advanced Materials)上(DOI: 10.1002/adma.201801556)。南京大学物理学院费付聪、薄祥两位同学为共同第一作者。宋凤麒教授、万贤纲教授、王伯根教授联合担任通讯作者。中国科学技术大学孙喆课题组、中科院物理所吕力课题组提供了部分实验条件的支持。

拓扑材料是当前凝聚态物理和材料科学的研究热点,随着研究的深入,拓扑材料的分类越来越丰富和多样化。其中二类狄拉克半金属便是人们在2017年发现的一类新型的拓扑材料,其能带结构拥有沿某一动量方向严重倾斜的线性色散狄拉克锥。新奇的能带结构也会带来一系列奇异的物理性质,因此受到了广泛关注。当前,二类狄拉克半金属的实验研究局限于PtSe2材料家族。但该家族的几种材料(PtSe2PtTe2PdTe2)能带结构都不完美,费米面离狄拉克点较远,且都有平庸杂带穿过费米面,对研究二类狄拉克半金属的奇异性质极为不利。因此寻找一种拥有优化能带的理想二类狄拉克半金属成为了相关研究亟待解决的关键问题。


图:(a) Pt掺杂的IrTe2能带优化策略示意图;(b) Ir1−xPtxTe2的角分辨光电子谱;(c) Ir1−xPtxTe2的超导电性。

该工作针对PtSe2家族能带上的不足,提出并证实了一种新型的二类狄拉克半金属Pt掺杂的IrTe2体系,其能带结构较PtSe2家族有了极大的优化,是一种理想的二类狄拉克半金属。不同Pt掺杂量的单晶样品通过助熔剂法成功合成。实验表明Pt替位掺杂不仅抑制了IrTe2纯相中低温下发生的结构相变,同时起到了电荷掺杂的作用,对费米面调控起到了关键作用。结合第一性原理计算与角分辨光电子能谱(ARPES),Ir1−xPtxTe2体系的能带结构被系统地研究,实验与理论计算高度吻合,其费米面附近仅有狄拉克能带的贡献,且通过改变Pt掺杂含量可将费米面在狄拉克点附近进行调控,当掺杂量x = 0.3时,费米面刚好切过狄拉克点。同时该工作还发现当费米面靠近狄拉克点时,Ir1−xPtxTe2样品会体现出超导电性。且对于费米面刚好位于狄拉克点的样品(x = 0.3),其超导电性仍然保持,超导转变温度约为0.15 K

Ir1−xPtxTe2体系集二类狄拉克锥、费米面可调、超导电性于一身,有希望为二类狄拉克半金属的相关研究提供良好的材料平台,也为拓扑超导和马约纳拉费米子的相关研究提供了可能的平台。

费付聪供稿)

 

2Nature communications 刊登吴兴龙教授团队“新型氮化碳纳米片高效光催化产氢”工作

近日,南京大学物理学院吴兴龙团队在碳氮化合物高效产氢方面取得重要进展,相关成果以“Half-Metallic Carbon Nitride Nanosheets with Micro Grid Mode Resonance Structure for Efficient Photocatalytic Hydrogen Evolution”为题于2018822日发表在Nature communications (Nature Communications volume9, Articlenumber:3366 (2018); DOI http://doi.org/10.1038/s41467-018-05590-x) 物理学院博士生周钢、晓庄学院副教授单云、江苏科技大学胡友友讲师、扬州大学许小勇教授为该论文共同第一作者,吴兴龙教授与刘力哲副教授为论文共同通讯作者。


1.微结构调控的半金属氮化碳材料产氢示意图。

自从上世纪70年代以来,利用半导体光催化剂进行光分解水产氢,成为人类获取氢能源的重要途径之一。不含金属的半导体催化剂由于价格低廉、性能优异而备受关注。众多研究表明,高效催化剂需要具备以下特点:光生载流子的有效分离;更高的催化活性;更多的活性位点;更好的载流子传输特性;更强的光响应和方便的可回收性。基于以上考虑,吴兴龙教授课题组巧妙地设计了一种基于新型半金属氮化碳纳米片的人工微腔共振光栅结构,实现了全波段的利用太阳光实现高效的光催化产氢。

研究团队首先通过DFT理论计算和实验发现了层状氮化碳材料[C(CN)3]具有半金属性,接着利用多孔AAO结构作为材料生长模板,使得小尺寸的氮化碳纳米薄片附着在人工纳米多孔管阵列中增多暴露的活性位点,同时构建了一种特殊的光学微腔共振光栅结构增强对太阳光的吸收。此外,这种设计还有利于催化剂的便捷回收。


2.hm- C(CN)3纳米片电子态结构。


3.微结构设计示意图。

此外,利用该材料的半金属特性,不仅有利于载流子的传输和催化活性提高,同时还可以有效促进光生载流子的自旋单态和三重态的转换从而延长载流子寿命,最终实现电子-空穴对的有效分离。这种光电耦合的结构极大程度地提升了整体太阳能的利用率,使得产氢速率达到1009 μmol g-1 h-1,是未经过处理的g-C3N4片层材料的的60多倍。该工作中利用微腔共振光栅结构与材料物理特性相结合的设计思路为光催化、电催化、光电催化以及光伏电池领域操纵电子传递和太阳能吸收提供了新的研究视角。


4.产氢性能图。

该项研究得到了科技部国家重点研发计划、国家自然科学基金委、江苏省自然科学基金、中央高校基本科研业务费支持。

(沈剑沧供稿)

 

3、闻海虎教授团队发现无毒的铜氧化物超导体具有最高的不可逆磁场

超导体的一个重要性质是无损耗地承载很大电流,因此利用超导磁体能够产生超强磁场。这个性质可以应用在国防,医疗,受控核聚变,高能加速器和新一代磁悬浮轨道交通等方面。在超导体的磁场和温度相图上,有一个标识无损耗传输电流的边界线叫不可逆线 Hirr(T),只有在不可逆线以下的温度和磁场,超导体才可以承载一定的超导电流。通常不可逆磁场越高,该超导体在强磁场下承载无损耗电流的能力就越强,并有一个更好的应用预期。

超导体只能在其临界温度Tc以下才能够进入超导态,因此要实现超导的应用就需要临界温度较高的超导体。液氮的沸点温度是77.3K,是容易制造而且成本低廉的制冷剂。因此发现临界温度在液氮温度之上并且具有高的不可逆磁场的超导体对于超导大规模应用至关重要。铜氧化合物超导体家族中就有很多超导体的临界温度超过液氮温度,如Y-系(123, Tc » 90K, Bi- (2223, Tc » 110K), Tl-(2223, Tc » 125K)Hg- (1234Tc » 124K)等。但是后两者含有毒性元素铊和汞,而且液氮温区的不可逆磁场似乎不高。Bi-系尽管没有毒性,但是因为具有太强二维性,在磁场下的超导临界电流下降很快,不可逆磁场很低,因此也无法在液氮温度下实现强电应用。Y-系超导体钇钡铜氧(YBa2Cu3O7-d,简称YBCO)的临界温度超过液氮温度,不可逆磁场也较高,因此人们目前把液氮温区大规模应用的期望放在YBCO身上;但是由于其较短的相干长度,制备出长导线极其困难,到目前为止仍然没有实现大规模应用。超导学界迫切需要寻找到超导临界温度在液氮温度以上,且不可逆磁场更高的无毒性超导体,以便实现更好的应用。

南京大学物理学院的闻海虎教授团队,利用高温高压合成技术,制备了一种无毒性的铜氧化合物超导体(Cu,C)Ba2Ca3Cu4O11+d,其临界温度约为116 K。仔细的电阻和磁化性质测量表明该超导体在液氮温度及以上的温区具有迄今为止最高的不可逆磁场,因此可能带来更好的应用。该工作于2018928日在线发表在Science Advances 4, eaau0192(2018)

该工作的起源是基于他们多年来对铜氧化物超导体不可逆磁场和临界电流问题的深入研究和认识。如前面所说,很多临界温度超过100K的超导体都具有毒性元素,因此怎样用无毒性元素替换掉这些毒性元素,同时使得不可逆磁场仍然较高,这是他们最近几年特别关注的方向。这使得他们回溯到1995年左右,国际学术界曾经有过这方面的初步探索,但是当时对超导体的成分表达式没有统一认识,另外也没有对不可逆线进行系统的研究。该小组利用高温高压合成手段,成功制备出体积含量在90%以上的(Cu,C)Ba2Ca3Cu4O11+d超导体,确认了分子式和结构。他们对该超导体仔细进行了磁场下的电阻和磁化测量,确定了其不可逆线。图1显示了该超导体的电阻在不同磁场下随温度的变化关系。可以看出, 即便在15特斯拉的强磁场下,在80K电阻仍然很小(降到仪器噪音范围内)。他们发现部分样品的不可逆磁场会更高。因为这里的电阻消失行为还主要是多晶之间的超导弱连接所决定,因此进一步改善弱连接,该类超导体的不可逆磁场还会继续升高。 


1. (Cu,C)Ba2Ca3Cu4O11+d超导体的电阻率在不同磁场下随温度的依赖关系。A. 电阻率随温度的变化关系,其插图显示的是在外磁场为10Oe下测量的磁化随温度的变化关系, ZFC表示用零磁场下冷却样品到低温然后加磁场的方式测量到的磁化数据,反映完全抗磁性;FC表示的是有场冷却测量模式。B. 显示的是A主图中同样的数据,电阻率以对数形式画出。可见无论磁化还是电阻都在116K左右出现剧烈下降,样品开始进入超导态。

利用超导转变附近正常态电阻1%的判据,他们确定了该超导体的不可逆磁场,数据画在图2中,见黑色方块和红色菱形数据点。同时画在图中的还有其他铜氧化物超导体的多晶样品或薄膜/单晶样品(磁场平行于c轴)的数据。可见(Cu,C)Ba2Ca3Cu4O11+d超导体在液氮温区直至116K具有最高的不可逆磁场。图中的蓝色斜线标示的区域是在钇钡铜氧(YBCO)超导体不可逆线基础上的进一步提高。可以看出,无论是超导临界温度还是不可逆磁场都有明显的提高。该工作一经在国际学术网站上贴出,即受到广泛的关注。Science Advances的三位评审人都给予了高度评价,认为这是本领域的一个巨大的成果(huge result)和显著进展(significant advance,有可能会激发起铜氧化物超导体应用研究的新高潮并最终导致大规模的应用。


2. (Cu,C)Ba2Ca3Cu4O11+d超导体的不可逆磁场与其他铜氧化物超导体的比较。图中的黑色方块和红色菱形数据点是两块样品的不可逆磁场曲线。目前,本领域强电应用方面最看好的无毒性超导体YBCO的数据用红色实心圆点和绿色三角形数据点标示。蓝色斜线标识的区域是在YBCO基础上的提高部分。

闻海虎教授团队在南京大学学校双一流项目的支持下,很快建立起来了高温高压下的样品制备条件,并投入使用,做出这个新结果。必须指出的是,目前的材料是在高压下合成出来的,电阻和磁化结果是在常压下测量的,其性质表明该超导体在常压下是极其稳定的,这为该超导体的应用提供了可能。但是要实现真正的大规模应用,也许还有很长的路要走。首先最好在低压或常压下合成出样品,另外该小组也在尝试将这个超导体制备成薄膜。该小组仍然在无毒性的临界温度在100K以上的超导体方面开展深入研究,希望在促进超导体在液氮温区的应用方面取得新进展。

       该成果是闻海虎教授团队独立完成的,张越博士生是文章第一作者,闻海虎教授和祝熙宇副教授为共同通讯作者,闻海虎协调了整个工作进展。此工作得到教育部一流学科建设,国家重点专项“量子调控项目”,自然科学基金委和2011计划“人工微结构科学与技术协同创新中心”的支持,在此表示感谢。 

参考文献和链接:

Unprecedented high irreversibility line in nontoxic cuprate superconductor (Cu,C)Ba2Ca3Cu4O11+δ. Yue Zhang, Wenhao Liu, Xiyu Zhu, Haonan Zhao, Zheng Hu, Chengping He, Hai-Hu Wen

http://advances.sciencemag.org/content/advances/4/9/eaau0192.full.pdf

(祝熙宇供稿)

 

4、李绍春课题组在单层1T’-WTe2中发现库仑能隙

二维拓扑绝缘体具有量子自旋霍尔效应,有望在未来低功耗自旋电子器件具有应用前景。它的体能带是具有带隙的半导体,边界处具有拓扑保护的无带隙金属态,并具有自旋-动量锁定特性。自从量子自旋霍尔效应在HgTe/CdTe量子阱中被发现以来,研究人员正在着力寻找可以实际应用的2DTI材料。然而,寻找一种结构稳定的真正意义的二维拓扑绝缘体具有很大的挑战。2014年,MIT理论研究组在理论上预测【Qian et al., Science 346, 1344(2014)】单层的1 T’-相过渡金属硫属化合物是一类新的二维拓扑绝缘体材料。这类新的拓扑材料结构稳定,有可观的体带隙,并且其拓扑性可以被电场调控,适于构建范德瓦尔斯逻辑开关器件。

近几年来,我校物理学院李绍春课题组一直致力于二维拓扑材料的实验探索,并成功地利用分子束外延技术在双层石墨烯衬底上生长出单层的1T’-WTe2,通过扫描隧道显微镜直接观测到一维的拓扑边界态。相关的成果已于2017年发表在Physical Review B (https://doi.org/10.1103/PhysRevB.96.041108)。值得一提的是,美国斯坦福大学的实验小组也在同时期独立报道了类似的工作【Nature Physics (https://doi.org/10.1038/NPHYS4174)

实验结果表明单层1T’-WTe2在低温下呈现绝缘行为,与单电子近似下的DFT计算结果并不一致。为解释这种矛盾现象,已经提出了若干种理论模型。然而,由于缺乏对单层1T‘-WTe2能带结构的精细理解,学术界对此问题还存在着争议。

近日,我校物理学院李绍春教授课题组在二维拓扑绝缘体的研究方面又取得了重要进展,他们借助高分辨的扫描隧道显微谱和准粒子干涉技术精确地表征了单层-1T’-WTe2的能带结构,确定了其为半金属型能带,解决了一直以来存在的争议。同时,他们在费米面附近观察到一个独特的能隙。通过扫描隧道显微谱实验,发现该能隙一直被钉扎在费米面处,并且可以随着费米能级的位置调控而移动。通过分析,他们发现这个能隙并不是一直以来被人们认为的自旋轨道耦合带隙,而是由于电子-电子相互作用而打开的库仑能隙。库仑带隙的打开可以有效地抑制WTe2体电导的干扰,导致低温下的绝缘行为,从而使得更容易观察到量子化的拓扑边界电导。根据安德森局域化理论,这种库仑能隙很可能也存在于其它的二维体系之中。

相关研究成果于2018104日以“Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe2”为题发表于《自然.通讯》(https://doi.org/10.1038/s41467-018-06635-x)。南京大学物理学院博士研究生宋业恒和贾振宇为论文共同第一作者,李绍春教授为论文的通讯作者。DFT理论模拟由物理学院张海军教授课题组完成。该系列工作一直以来得到了邢定钰院士的大力支持。

特别感谢固体微结构物理国家重点实验室、人工微结构科学与技术协同创新中心、国家科技部重大研究计划,国家自然科学基金面上项目、中组部青年千人计划、江苏省双创人才和六大人才高峰等项目提供的资金资助。


1. 单层WTe2 STM形貌图和STS. (a) 石墨烯上生长单层WTe2原子模型 (b) 单层WTe2原子分辨图. (c) 单层WTe2对应的布里渊区. (d) STS谱随空间位置的变化, 红色和蓝色箭头分别对应库仑能隙和价/导带的交叠区域. (e)(f), 两个典型能量的dI/dV maps, 准粒子干涉产生的空间波动清晰可见。


2. 准粒子干涉图样与傅立叶变换结果. (a-d)不同能量下的准粒子干涉图案的傅立叶变换结果. (e) 沿着Y-Γ-Y 方向的能带结构示意图. (f) 由实验得到的Y-Γ-Y 方向的E-q 能带色散关系。

(李绍春供稿)

 

5、介电体超晶格实验室刘辉组利用变换光学芯片模拟早期宇宙量子相变与时空拓扑缺陷

宇宙起源是现代物理学的基本科学问题。虽然爱因斯坦广义相对论成功地描述了宇宙的演化,但是宇宙起源的时空奇点是需要量子力学来解释。因此,为了解释目前很多观测的宇宙现象,特别是早期宇宙起源,理论物理学家采用量子场论模型描述宇宙时空的性质,认为宇宙时空像是一种凝聚态量子物质,宇宙从大爆炸诞生、演化到现在,随着温度的降低,宇宙时空会经过一系列量子相变过程,这种相变会导致时空真空场的对称性破缺,而在宇宙中留下各种拓扑缺陷,例如磁单极子和宇宙弦等。通过探测这些时空的拓扑缺陷,人们不但可以追溯早期宇宙的诞生过程,而且观测量子引力效应和研究时空的本质。虽然人们已经开始尝试寻找时空拓扑缺陷,但由于人类太空量子探测技术的局限,目前尚未成功。另外,基于宇宙时空与凝聚态物质的类比关系,理论物理学家提出了变换光学的方法,主要是在凝聚态介质中通过连续改变物质的属性,模拟引力场弯曲时空,从而在实验上检验和演示各种弯曲时空中光子态的演化特性和量子效应,例如:光子黑洞、霍金辐射效应、宇宙膨胀红移等。


图一 (a)宇宙弦拓扑时空的嵌入图; (b) 宇宙弦拓扑时空的角度缺损; (c)负质量宇宙弦对光线的排斥;(d)正质量宇宙弦对光线的吸引。

近些年,南京大学物理学院介电体超晶格实验室的祝世宁、刘辉研究组利用变换光学芯片,开展了弯曲时空中光子态演化特性的实验研究,取得系列成果。最近研究组的盛冲博士制备了一种二维弯曲超材料,实现一种新型的具有轴向旋转对称的各项异性变换光学介质,旋转对称中心可以模拟一维时空拓扑缺陷: 宇宙弦(图一(a))。虽然宇宙弦不会像其他质量的天体在周围时空中直接产生引力场,但是会造成周围时空拓扑结构的改变,导致时空角度的缺损或盈余(图一(b)),光在这种拓扑时空中传播的时候,无论光子的入射位置、传播方向、波长、偏振方向如何,都会产生一个确定的偏转角Δ=8πGµ,偏转的角度数值只决定于宇宙弦的质量密度µ,这是宇宙弦拓扑时空鲁棒性的体现。对于负质量密度的宇宙弦µ0, 光线将被宇宙弦吸引(图一(d))。实验中,研究组通过调节结构参数,制备得到了对应负质量和正质量宇宙弦的光学芯片(图二(a)(e)),并通过显微荧光探针技术直接观察到了光束经过拓扑缺陷产生的偏折,实验测量的偏折角度具有时空拓扑保护的鲁棒特性,与入射光束的位置、方向等因素都无关(图二(b-d),(f-h))


图二 二维弯曲超材料模拟负质量宇宙弦(a)和正质量宇宙弦(e); 负质量宇宙弦排斥光束的实验结果(b-d); 正质量宇宙弦吸引光束的实验结果(f-h).

普通的光学介质在对光场进行操控的时候,总会改变光场的部分性质,让光场携带的信息丢失,例如最简单的光学反射会翻转光场的左右分布(图三(a)), 而普通天体引力透镜会导致光场的形变和发散(图三(b)),而宇宙弦拓扑时空中光场的传递是具有很好的鲁棒性,光场的分布被整体地保护起来,光信息的传递基本没有损失(图三(c))。为了进一步证明这种拓扑时空对光信息的无损传递特性,研究组将各种复杂光场耦入光学芯片中,例如多光束光场(图三(d))Airy光束(图三(e)),实验结果显示光场在拓扑时空中传输,光场被很好地保护起来而没有被破坏。根据当代量子宇宙模型,时空缺陷是在宇宙量子相变过程中,真空场自发对称性破缺所导致的结果(图三(f))

研究组通过在光学芯片中调节材料损耗系数来模拟时空的拓扑相变过程(图三(g))。结果表明当材料损耗较大,超材料表现为各项同性 (图三(h)),真空场处于对称相(图三(i)),时空无拓扑特性;当材料损耗降低至临界点以下,超材料表现为各项异性(图三(h)),真空场对称性自发破缺(图三(i)),时空具有非平庸拓扑特性。这些结果显示损耗可以做新的自由度在芯片上调控光子的拓扑性质。

该工作近期发表在“Definite photon deflections of topological defects in metasurfaces and symmetry-breaking phase transitions with material loss” Nature Communications 9:4271 (2018), 研究组博士后盛冲是第一作者, 厦门大学的陈焕阳教授参与理论分析,祝世宁院士参与了讨论和文章的修改, 南京大学是第一单位。该工作得到固体微结构物理国家重点实验室和人工微结构科学与技术协同创新中心的支持,国家自然科学基金重大项目“光子态的时空演化与应用” (No.11690033)和科技部量子调控项目“人工微结构中新奇量子、类量子效应研究” (No. 2017YFA0303702)的资助,在此表示感谢。


图三(a)普通光学反射; (b)普通天体的引力透镜效应; (c) 拓扑时空中光场的传输; (d) 光学芯片中多光束传输实验; (e) 光学芯片中Airy光束传输实验; (f)宇宙真空场的自发对称性破缺; (g)调节材料损耗模拟拓扑相变; 相变过程中超材料光学模式的改变(h)与对称性破缺(i)

(刘辉供稿)

 

6、缪峰课题组与王强华课题组合作报道第二类外尔半金属超导研究重要进展

由于拓扑超导体在量子计算中潜在的巨大价值,近年来,全世界的科学家们对寻找潜在的拓扑超导材料表现出极大的兴趣。随着外尔半金属在近几年出现在科学家们的视野,理论预言超导态下的外尔半金属有可能成为拓扑超导的候选材料—外尔费米子的配对会表现出不同于普通BCS配对的性质。其中,与第一类外尔半金属相比,第二类外尔半金属由于拥有倾斜的外尔锥以及在电子空穴口袋边界形成外尔点,理论预言在超导态时,二类外尔半金属会表现出更显著的拓扑超导的性质。二碲化钨(WTe2)作为一种被广泛关注的第二类外尔半金属,研究其超导性质对探索拓扑超导具有重要的意义。然而本征的二碲化钨是非超导材料,如何使其在保持第二类外尔半金属特性的同时实现超导,是当前研究领域的一个重大挑战。

我校物理学院的缪峰教授课题组之前(2016年)利用低温电子输运的手段,提供了二碲化钨作为第二类外尔半金属的有力实验证据(Nat. Commun. 2016, 7, 13142)。在此基础上,缪峰课题组近日又首次实验实现了近邻效应诱导的WTe2的超导,在其超导态下观察到了反常的亚带隙输运特征;我校物理学院的王强华教授课题组理论结合实验,理论证明了实验观察到的微分电阻震荡来源于WTe2超导的亚带隙反常特性。需要指出的是,不同于之前人们研究的高压诱导超导,这项工作中近邻效应诱导的二碲化钨超导仍保持了其第二类外尔半金属的特征,为后续研究外尔半金属最终实现拓扑超导奠定了基础。


a)WTe2/NbSe2异质结器件结构示意图;b)WTe2被诱导实现超导;c)微分电阻(dV/dI-Vds)的震荡数据;d)理论计算WTe2超导的亚带隙反常特性。

这项工作首先利用二维材料可控转移技术,制备了WTe2/NbSe2范德华垂直异质结(如图a所示)。在这个结构中,NbSe2作为超导体,在垂直方向上通过近邻效应诱导实现了WTe2超导,如图b所示,可以根据测量的临界电流证实超导信号来自于WTe2。同时, WTe2在不同偏压下的微分电阻(如图c所示)表现出了震荡的趋势,与一般超导体截然不同。对一般超导体,当电流导致超导被破坏时,电阻会从零瞬时变回常值电阻;而对于WTe2,微分电阻的震荡表明其在从超导态到正常态的变化过程中,库珀对的破坏并不是在瞬时发生的,而是一个逐步被破坏的过程。理论计算表明,WTe2NbSe2诱导超导后,其态密度在超导带隙内是V型的,不同于一般超导体的U型。此外,态密度在带隙内的震荡趋势(图d)与实验结果吻合很好,证明了观察到的微分电阻震荡确实是WTe2超导的亚带隙反常引起的独特性质。最后,值得指出的是,除了利用近邻效应,在同样的WTe2体系中实现超导还可能有不同的技术途径,其中包括不久前我校物理学院李绍春教授合作团队提出的碱金属插层的实验手段。

该工作以“Proximity-Induced Superconductivity with Subgap Anomaly in Type II Weyl Semi-Metal WTe2”为题,近日(2018117日)在线发表于Nano LettersDOI: 10.1021/acs.nanolett.8b03924)。我校物理学院博士生李乔、博士生何超城和博士生王瑶佳为该工作的共同第一作者,缪峰教授、王强华教授和梁世军副研究员为该工作的共同通讯作者。中国科学技术大学陈仙辉教授和中科院物理所石友国研究员为该工作提供了实验材料的支持,我校物理学院的邵陆兵副教授也参与了该合作课题。该项研究得到微结构科学与技术协同创新中心的支持,以及南京大学卓越计划、国家杰出青年科学基金、科技部“量子调控”国家重大科学研究计划青年项目、国家自然科学基金等项目的资助。

李乔供稿)

 

7、国家重点研发计划大科学装置前沿研究重点专项ATLAS实验Run-2数据物理分析”项目启动会在我校成功召开

2018118日上午,由南京大学校牵头,物理学院金山教授主持的国家重点研发计划大科学装置前沿研究重点专项“ATLAS实验Run-2数据物理分析”项目启动会,在我校鼓楼校区顺利召开。科技部高技术研究发展中心墨宏山处长,校长助理陈建群教授,科技处处长徐夕生教授,物理学院院长李建新教授,项目责任专家北京大学朱世琳教授,项目组专家北京大学赵光达院士、中国科学院理论物理研究所张肇西院士、中国科学院上海应用物理研究所马余刚院士、清华大学王青教授、上海交通大学何红建教授、中国科学院高能物理研究所李卫东研究员和华中师范大学刘峰教授出席了会议。另外,南京大学、中国科学院高能物理研究所、中国科学技术大学、山东大学、上海交通大学和清华大学的项目骨干,共30多人参加会议。

ATLAS实验Run-2数据物理分析”项目的研究目标是利用大型强子对撞机LHCATLAS实验获取的Run-2数据(即2015-2018年获取的13TeV质子-质子对撞数据)测量研究希格斯粒子的性质和寻找超出标准模型的新物理。启动会上金山教授介绍了项目的整体情况和实施方案,随后各课题负责人详细汇报了课题实施方案。与会专家对项目研究内容、技术路线和实施方案给予了充分肯定,对项目实施中保持各课题研究在ATLAS实验相关研究中的主导或主要贡献、加强项目组与理论家和计算机专家的合作交流等方面提出了很多宝贵的建议。大家一致认为,项目的成功实施对中国在国际高能物理最前沿的实验领域取得重大物理成果、吸引和培养一批具有国际视野的青年领军人才和研究骨干具有非常重要的意义。

大型强子对撞机LHC周长27公里,位于欧洲核子中心CERN,是世界上最大能量最高的对撞机,也是高能物理最前沿的大科学实验装置。ATLAS探测器是LHC上最主要探测器之一也是世界上最大的探测器。ATLAS合作组由世界上38个国家180多个研究单位5000多名科学家参加(其中署名作者3000多名)。ATLAS中国组由南京大学、中科院高能所、中国科技大学、山东大学、上海交通大学和清华大学组成,包括职员、博士后和学生100多人,是中国参加LHC实验最大的研究队伍。1998年至今,ATLAS中国组在科技部、基金委和中科院的长期联合支持下,在ATLAS探测器建造,在希格斯粒子的发现和性质测量研究、超对称SUSY和其他超出标准模型新物理寻找、top物理研究和标准模型测量研究中做出重要贡献。南京大学是ATLAS中国组的发起单位之一。2017年以来,南京大学ATLAS组的在职研究人员从1名增加到4名并从国内外招收了多名博士后,研究实力大幅增强。在ATLAS实验最近发布的发现希格斯粒子衰变到底夸克对的成果中,南大组做出了重要直接贡献。

(周思成供稿)

more学院新闻

more通知公告