物理学院 School of Physics, Nanjing University

加入收藏

物理学院第 201702 期工作简报(2017-3-2)(院办)

2017年03月02日

南京大学物理学院工作简报
第201702期(总第261期)
南京大学物理学院 2017-3-2

 
1月13日上午,我院在知行楼二楼报告厅举行了2016年度总结大会。1月17日上午,在知行楼一楼报告厅举行了离退休同志座谈会。1月13日下午,物理学院分工会,组织了玄武湖环湖健身走活动。(院办)
2月16日,物理学院安全工作组对全院的安全工作进行了检查,并对低温楼提出了整改意见。(院办)
 
1、闻海虎教授团队观测到拓扑表面态狄拉克电子变成超导库玻对的直接证据
众所周知,超导态的载流子是由两个电子构成的库玻对。根据库玻对中两个电子自旋的取向不同,库玻对又被分成自旋单态(自旋反对称)和自旋三态(自旋对称)两种模式。目前发现的绝大多数超导体具有自旋单态电子配对形式。在传统的BCS超导理论中,两个动量相反、自旋相反的电子通过原子晶格的帮助而形成库玻对。这些库玻对发生类玻色凝聚,形成宏观尺度量子相干效应,从而实现零电阻和完全抗磁性。超导体因为具有这些特别的性质,可以开发出很多重要的应用,为世界各国所重视。
对于拓扑绝缘体,由于特殊的电子能带反转效应,因此在其表面会形成质量为零,能量和动量之间具有线性色散关系的电子,此类电子被称为狄拉克电子。这些特殊的粒子,在自旋轨道耦合的作用下,会形成自旋和运动方向的锁定效应,即具有一个自旋取向的电子只会朝一个方向运动,而自旋相反的电子会朝相反方向运动。因此,从原理上说,狄拉克电子不同于形成库玻对的电子,它们的基本约束条件有很大区别。此外,如果实现拓扑超导,有可能观察到一类新的粒子,即所谓马约拉纳子,在未来量子计算中具有重要作用。因此能否直接观测到狄拉克电子变成库玻对,并且研究狄拉克电子超导性质是凝聚态物理领域非常重要的研究方向。最近,闻海虎教授团队在一种可能的拓扑超导体SrxBi2Se3中,利用低温强磁场的扫描隧道谱测量,观测到狄拉克电子变成库玻对的直接证据。该工作于2017年2月15日在线发表在Nature Communications上面 [Guan Du et al., Nature Communications 8,14466 (2017)]。该工作发现了狄拉克电子变成超导库玻对的直接证据,打开了研究狄拉克电子形成超导的新模式,对下一步研究拓扑超导和马约拉纳新粒子具有重要促进作用。
该工作是人工微结构科学与技术协同创新中心内部不同研究组之间合作的成果。隧道谱的测量和分析是由博士生杜冠同学、杨欢教授和闻海虎教授为主完成,先进的低温强磁场扫描隧道谱设备是闻海虎教授研究组加盟南京大学后建立的。样品是由人工微结构科学与技术协同创新中心成员,合肥强磁场中心实验室的张裕恒院士和张昌锦研究员小组,以及南京大学温锦生教授小组提供。文章第一作者是杜冠同学,通讯作者是张昌锦研究员,杨欢教授和闻海虎教授。闻海虎教授协调了整个工作。
该工作的主要结果以示意图的形式在图1中演示。图1(a)显示的是狄拉克电子的能量-动量色散的三维图,水平截面显示的是费米面。在未进入超导的时候,系统具有完整的费米面,狄拉克电子具有导电性而且动量和自旋锁定。图1(c)显示的是在超导态在样品表面测量到的隧道谱。他们发现,在不加磁场的时候,在能隙之外,隧道谱显示的是光滑的曲线(这里没有显示),能隙内态密度被大大压制,反映的是超导态准粒子的典型特征。然而,当加一个磁场的时候,如图1(c)所示,在能隙之外,他们观察到很强的振荡,而且振荡幅度随磁场增加而增加。这个奇异的现象是由于表面态狄拉克电子在磁场中形成的朗道能级,在费米能附近,态密度会出现量子振荡效应,因而被隧道谱实验测量出来。令人吃惊的是,这种振荡到了能隙以内就出现强烈压制,或用偃旗息鼓来描述。去除背景效应之后,在能隙内部的振荡可以认为确实被强烈抑制。这表明表面态的狄拉克电子被体超导诱导变成了库玻对。而此时的色散关系变成了狄拉克电子在超导态的情形,如图1(b)所示。
图1. (a)显示的是狄拉克电子色散关系,平面为费米面;(b)显示的是狄拉克电子变成库玻对以后在费米面附近形成的超导能隙;(c)是根据加磁场后扫描隧道谱在空间变化的实验数据所画出来的示意图。实验数据表明,在能隙外,态密度剧烈振荡,形成波澜起伏的状态,显示狄拉克电子在磁场中形成朗道能级效应。由于空间涨落效应,在不同位置,其振荡起伏的具体能量并不严格一致。然而,到了能隙以内,即图1(c)中显示的深凹槽区域,这种振荡就显著变弱,甚至消失,说明狄拉克电子变成了库玻对并且发生了超导凝聚。
该工作得到科技部国家重点研发专项-量子调控重点专项 “新型高温超导和非常规超导机理”项目(编号:2016YFA0300400),国家自然科学基金委重点项目(编号:A0402/A11340502),教育部“985计划”和“一流大学和一流学科建设计划”,以及人工微结构可续与技术协同创新中心的支持,作者对此一并表示感谢。
(南京大学新闻网http://news.nju.edu.cn/show_article_12_44934
 
2、《Physical Review Letters》发表声学研究所刘晓峻教授课题组最新研究成果
我院声学研究所刘晓峻教授课题组在拓扑声子晶体研究方面取得进展,他们在声子晶体中发现声学旋转多极子模式,并且成功构造无流体背景场中的声拓扑绝缘体,相关研究成果以《Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice》 为题于2017年2月23日发表于Physical Review Letters[Z. W. Zhang et.al, Phys. Rev. Lett. 118, 084303 (2017)]。论文第一作者为2015级硕士研究生张志旺,程营副教授为论文的共同通讯作者。
电子的自旋-轨道耦合带来了许多引人入胜的现象和重要的应用,包括拓扑绝缘体和自旋电子学。量子霍尔效应以及量子自旋霍尔效应都依赖于电子的自旋属性,然而对于声波而言(例如空气声和水声),其纵波振动的本质导致不存在天然的自旋属性,因而实现声学拓扑态有一定的困难。研究者开始探索在传统的经典波系统,如声学系统中,是否会出现与自旋-轨道耦合类似的类量子效应,如果存在这种效应,又会带来怎样的启发。最近,有科学家提出利用背景流速场实现声类似量子霍尔效应,或构造耦合环形波导结构实现声类似量子自旋霍尔效应的理论方法以及实验验证,但是由于复杂的构造要求以及数倍波长的晶格尺寸要求,使得这些方法在设计和实际应用上有很大难度。
根据经典声学理论,传统的声学多极子模式(例如偶极子以及四极子),声波能量向固定方位向外辐射,无法形成类似自旋的旋转声场。刘晓峻教授课题组提出了在无流速背景的超材料声子晶体中构造声学赝自旋偶极子和四极子模式,并实现可调控声波拓扑传输的普遍性理论方法。首先,对蜂窝状晶格声子晶体的初基原胞旋转30度并放大,使得蜂窝状晶格变为由六个单元组成的超元胞组成的三角晶格,通过能带折叠理论形成双狄拉克锥(图1)。然后,在保持所有单元不变的情况下仅依靠收缩或者扩大超元胞内各单元的间距,可以打破双狄拉克锥形成带隙。研究发现,在带隙附近的声压场分布呈现出类似于电子p/d轨道的对称形式,而平均声强沿顺时针或逆时针转动,即产生了区别于传统声学多极子模态的有效声学赝自旋偶极子和四极子。研究进一步发现,收缩超元胞内单元时晶体能带呈现平庸态(trivial),即赝自旋偶极子模式频率位于赝自旋四极子模式之下,与传统声学理论一致;而扩大超元胞内单元间距时赝自旋偶极子模式频率跃居赝自旋四极子模式之上,为非平庸态(nontrivial),从平庸态到非平庸态表明发生了能带反转(图2)。在平庸态晶体和非平庸态声子晶体之间的边界上可以形成声赝自旋与传输轨道相耦合的声拓扑边界态,不同赝自旋态之间的边界态传输没有干扰,并且通过调节超元胞内单元的间距可以实现可调控的、任意形状的拓扑边界。同时,这种拓扑边界态拥有背向散射抑制能力以及很好的鲁棒性,拓扑边界上的空腔、无序排列以及弯曲等缺陷不仅不会引起背向散射,而且不会改变边界声传输的自旋态(图3)。这种产生声学赝自旋多极子模式的普遍性方法还可以进一步推广到“气-液”、“固-液”、“固-气”等多种基本的声学体系中。

图1:(a)变换前后元胞的第一布里渊区。(b)布里渊区折叠过程。(c)能带折叠过程。(d)超元胞组成的三角晶格色散图上形成双狄拉克锥。

图2:(a)通过收缩和扩大超元胞内单元间距打破双狄拉克锥形成带隙。(b)p/d轨道反转,即能带发生反转。(c)-(d)赝自旋向上、赝自旋向下对应的声强分布。

3:(a)-(b)拓扑边界赝自旋向下态沿边界顺时针传输。(c)在乱序、弯曲以及空腔干扰下声波的拓扑边界传输具有很好的鲁棒性。
 
该项工作得到国家重大科学研究计划(2012CB921504)、人工微结构科学与技术协同创新中心、国家自然科学基金和江苏省杰出青年基金的支持。
(程营供稿)
 
3、《Physical Review Letters》发表王炜教授课题组在蛋白质天然态结构物理特性研究最新成果
物理学院王炜教授课题组在蛋白质分子体系天然态结构涨落的物理特性方面研究取得重要成果,揭示出自然选择的蛋白质具有临界物理特征,可有效实现其结构稳定性和灵活性之间的平衡。他们的论文“Critical fluctuations in the native state of proteins”于2017年2月24日在物理学评论快报在线发表(Phys.Rev.Lett.,118, 088102(2017)),该工作是王炜教授课题组与阿根廷圣马丁大学的D.R.Chialvo教授合作成果,博士生唐乾元同学为论文第一作者,王骏教授、王炜教授和Chialvo教授为共同通讯作者。
蛋白质是生物系统的结构组成和生命过程最基本的生物大分子,其天然态结构是生物体系的组成稳定性和功能执行之基础。1970年代以来,基于诺贝尔奖获得者安芬森的蛋白质折叠可逆性,人们建立了以天然结构稳定性为核心的蛋白理论框架。理解蛋白质分子的序列、结构与功能之间的关系成为分子生物学研究的核心,是物理学与生物学交叉的前沿方向。近年来,人们在蛋白质柔性和功能运动方面积累了越来越多的认识,对蛋白质天然态结构的科学内涵提出新的挑战。如何刻画蛋白质结构稳定性与功能运动的动态关系,揭示相关的普适物理特性?这些基础性研究将极大地提升人们对蛋白质分子体系物理特性的认识及其生物功能的了解。
唐乾元他们从蛋白质功能运动的物理过程出发指出:一方面,蛋白质分子必须具有一定柔性且足够敏感,才能保证其在细胞环境中捕捉和感受各种信号,从而发生构象变化和行使生物功能;另一方面,如果分子柔性过大,在环境扰动影响下,其结构会变得很不稳定,从而影响其功能的实现。围绕这种竞争和平衡,他们运用统计物理,对蛋白质结构数据库中相关的蛋白质分子结构集合进行统计分析,发现蛋白质分子中氨基酸之间的位置涨落存在长程关联,关联长度与分子尺度大小相当,标度后的关联函数展示出普适行为(图1a-d)。结果表明,不管蛋白质分子大小如何,分子中某一氨基酸残基的运动,会被分子内其他氨基酸残基感受到。还发现蛋白质分子在特定形状因子附近的涨落特性具有临界标度行为(图2a),更多的蛋白质分子具有更大的涨落或更大的“可变性”。这些特征与统计物理学中相变的“临界现象”非常相似,蛋白质分子的天然态结构正是在“有序”和“无序”之间达到了其“临界点”。揭示在自然进化和选择过程中,蛋白质分子需要在结构的“稳定性”和“可变性”之间达成某种平衡,这种竞争和平衡在蛋白质结构和功能层面上对应着相关的临界特性,从而展现出蛋白质分子的共有结构特征(图2b)。

1:(a)蛋白质分子结构涨落(示意图);(b)不同大小蛋白质的相关函数;(c)标度后完全重合,展示蛋白质结构涨落的普适特征;(d)关联长度与蛋白质尺寸大小的关系。
 
 
2:(a)不同大小蛋白质的可变性(或敏感性)和形状因子之间的关系,表现出类似“临界行为”的特征,揭示了蛋白质结构涨落的基本物理特点。(b)自然界的蛋白质分子倾向出现在临界性最强的形状因子附近。
该项工作通过对蛋白质结构数据的统计分析和相关物理特性的刻画研究,在结构生物学实验和理论与统计物理学理论之间架起了桥梁,为人们揭示生物分子进化的原理提供了新思路,对理解蛋白质的折叠、变构和聚集等动力学过程具有重要的理论意义。“临界性”本身为蛋白质设计提供理论基础,可为药物和抗体的设计等问题提供新的启示和参考。该项工作推进了人们对蛋白质分子体系结构和功能的认识。研究项目得到国家自然科学基金和科技部973计划等项目的支持,以及人工微结构科学与技术协同创新中心的支持。
(王骏供稿)

more学院新闻

more通知公告